Molecular mechanisms and kinetics between DNA and DNA binding ligands.
نویسندگان
چکیده
Mechanical properties of single double-stranded DNA (dsDNA) in the presence of different binding ligands were analyzed in optical-tweezers experiments with subpiconewton force resolution. The binding of ligands to DNA changes the overall mechanic response of the dsDNA molecule. This fundamental property can be used for discrimination and identification of different binding modes and, furthermore, may be relevant for various processes like nucleosome packing or applications like cancer therapy. We compared the effects of the minor groove binder distamycin-A, a major groove binding alpha-helical peptide, the intercalators ethidium bromide, YO-1, and daunomycin as well as the bisintercalator YOYO-1 on lambda-DNA. Binding of molecules to the minor and major groove of dsDNA induces distinct changes in the molecular elasticity compared to the free dsDNA detectable as a shift of the overstretching transition to higher forces. Intercalating molecules affect the molecular mechanics by a complete disappearance of the B-S transition and an associated increase in molecular contour length. Significant force hysteresis effects occurring during stretching/relaxation cycles with velocities >10 nm/s for YOYO-1 and >1000 nm/s for daunomycin. These indicate structural changes in the timescale of minutes for the YOYO-DNA and of seconds for the daunomycin-DNA complexes, respectively.
منابع مشابه
Synthesis, Characterization, DNA Binding and Nuclease Activity of Cobalt(II) Complexes of Isonicotinoyl Hydrazones
Cobalt(II) complexes of isonicotinoyl hydrazones of two series of ligands have been synthesized and characterized on the basis of elemental analyses, molar conductance, magnetic moment, mass, IR, UV spectral data. Electrochemical behavior of ligands and complexes has been investigated by using cyclic voltammetry. Cyclic voltammetric studies reveal that the oxidation/reduct...
متن کاملCu(II) and Zn(II) complexes with unsymmetrical tetradentate Schiff base ligands: Synthesis, spectral characterization, antimicrobial assay and DNA binding property
The reaction of copper(II) chloride and zinc(II) chloride with N-(2-methylphenyl)-3-(1'-salicylaldehydene-2'-imine-ethane)-butanamide(H2L2a) or (MPSB), N-(2-methylphenyl)-3-(1'-(3'-methoxysalicylaldehydene-2'-imine-ethane)-butanamide (H2L2b) or (MPMSB) and N-(2-methylphenyl)-3-(1'-(2'-hydroxyacetylene-2'-imine-ethane)-butanamide (H2L2c) (MPHB) leads to the formation of a series of new complexes...
متن کاملDNA groove binding of an asymmetric cationic porphyrin and its Cu(II) complex: Resolved by spectroscopic, viscometric and molecular docking studies
In the present study, the interaction between water-soluble cationic asymmetric porphyrin, 5-(1-Hexadecyl pyridinium-4-yl)-10, 15, 20-tris (1-Butyl pyridinium-4-yl) Porphyrin Chloride, and its copper (II) derivative with calf thymus DNA (CT-DNA) were studied by means of spectroscopic techniques, viscosity measurements and molecular docking. The monitoring of the changes in visible absorbance sp...
متن کاملDual-Target Anticancer Drug Candidates: Rational Design and Simulation Studies
This study aims to design some dual-target anticancer candidates, capable to act as an alkylating agent as well as a thymidylate synthase (TS) inhibitor. The designed scaffold is a combination of nucleobase, amino acid and aziridine structures. The candidates are docked into TS and three DNA double strand structures and evaluated based on their binding interaction energies and ligand efficienci...
متن کاملSpectroscopic and Molecular Docking Studies on DNA Binding Interaction of Podophyllotoxin
The binding interaction of novel podophyllotoxin derivative, (3R,4R)-4-((benzo[d][1,3]dioxol-5-yl)methyl)-dihydro-3-(hydroxy(3,4-dimethoxyphenyl) methyl) furan-2(3H)-one (PPT), with calf thymus DNA (ctDNA) has been examined using UV-Visible absorption spectrophotometry, fluorescence spectroscopy, viscosity measurement and molecular docking studies. UV-Vis absorption results showed hyperchromic ...
متن کاملDNA intercalation optimized by two-step molecular lock mechanism
The diverse properties of DNA intercalators, varying in affinity and kinetics over several orders of magnitude, provide a wide range of applications for DNA-ligand assemblies. Unconventional intercalation mechanisms may exhibit high affinity and slow kinetics, properties desired for potential therapeutics. We used single-molecule force spectroscopy to probe the free energy landscape for an unco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 88 1 شماره
صفحات -
تاریخ انتشار 2005